20 БАЛЛОВ ПОМОГИТЕ 11-ЫЙ КЛАСС

20 БАЛЛОВ ПОМОГИТЕ 11-ЫЙ КЛАСС
Гость
Ответ(ы) на вопрос:
Гость
y=(x^2-6x+8)/(x+7)=(x-2)(x-4)/(x+7) 1) Область определения: х не=-7 2) В точке х=-7 неустранимый разрыв 2 рода. 3) Функция не чётная и не нечётная. Не периодическая. 4) Пересечение с осями. y(0)=(0-0+8)/(0+7)=8/7 y=0 при х1=2; х2=4. 5) Критические точки. y'=((2x-6)(x+7)-(x^2-6x+8))/(x+7)^2=0 2x^2+8x-42-x^2+6x-8=0 x^2+14x-50=0 D/4=7^2+50=49+50=99 x1=-7-√99 - максимум x2=-7+√99 - минимум Потому что между ними, при х=0 будет y'=-50<0, то есть график убывает. Кроме того, при x=-7 разрыв функции производной. Но при x€(-7-√99;-7) и при x€(-7;-7+√99) производная отрицательна, то есть график убывает. 6) Точки перегиба y''=((2x+14)(x+7)^2- (x^2+14x-50)*2(x+7))/(x+7)^4= (2(x^2+14x+49)-2(x^2+14x-50)/(x+7)^3= (2*49+2*50)/(x+7)^3=198/(х+7)^3 Точек перегиба нет (дробь не =0 ни при каком х), но при х<-7 будет y''<0, график выпуклый вверх, а при х>-7 будет y''>0, график выпуклый вниз. 7) Асимптоты. Вертикальная х=-7 Наклонные: f(x)=k*x+b k=lim(y/x) при x->oo = lim(x^2-6x+8)/(x^2+7x)=1 b=lim(y-kx) при x->oo = lim(x^2-6x+8-x^2-7x)/(x+7)=0 Наклонная асимптота f(x)=x
Не нашли ответ?
Ответить на вопрос
Похожие вопросы