2sin^2 (3pi/2+x)+cos(pi-x) решите пожайлуста

2sin^2 (3pi/2+x)+cos(pi-x) решите пожайлуста
Гость
Ответ(ы) на вопрос:
Гость
4 * cos^2 (pi/2 + x) + 3^(1/2) * sin (3pi/2 - x) * sin (pi + x) + 3 * cos^2 (pi + x) = 3 cos (pi/2 + x) = -sin x sin (3pi/2 - x) = -cos x sin (pi + x) = -sin x cos (pi + x) = -cos x Получаем следующее: 4 * (-sin x)^2 + 3^(1/2) * (-cos x) * (-sin x) + 3 * (-cos x)^2 = 3 4 * sin^2 x + 3^(1/2) * sin x * cos x + 3 * cos^2 x = 3 4 * sin^2 x + 3^(1/2) * sin x * cos x + 3 * cos^2 x = 3 * 1 4 * sin^2 x + 3^(1/2) * sin x * cos x + 3 * cos^2 x = 3 * (sin^2 x + cos^2 x) 4 * sin^2 x + 3^(1/2) * sin x * cos x + 3 * cos^2 x = 3 * sin^2 x + 3 * cos^2 x sin^2 x + 3^(1/2) * sin x * cos x = 0 sin x * (sin x + 3^(1/2) * cos x) = 0 1) sin x = 0 => x = pi * n 2) sin x + 3^(1/2) * cos x = 0 Если cos x = 0, то из уравнения sin x = 0, что противоречит тому, что sin^2 x + cos^2 x = 1 Значит cos x <> 0, тогда разделим обе части уравнения на cos x: tg x + 3^(1/2) = 0 tg x = -3^(1/2) x = -pi/3 + pi * n Ответ: x = pi * n, x = -pi/3 + pi * n
Не нашли ответ?
Ответить на вопрос
Похожие вопросы