Абсцисса центра симетрии линии 2x^+2y^-8x+5y-4=0равна

Абсцисса центра симетрии линии 2x^+2y^-8x+5y-4=0равна
Гость
Ответ(ы) на вопрос:
Гость
[latex]2x^2+2y^2-8x+5y-4-0\\\\2(x^2-4x)+2(y^2+\frac{5}{2}y)=4\\\\2\cdot ((x-2)^2-4)+2\cdot ((y+\frac{5}{4})^2-\frac{25}{16})=4\\\\(x-2)^2+(y+1,25)^2=\frac{89}{16}\\\\Centr\; v\; tochke\; \; (2\, ;-1,25)\; .\\\\Abscissa\; \; x=2.[/latex] Заданная линия - окружность с  центром в точке (2; -1,25) и радиусом [latex]R=\frac{\sqrt{89}}{4}[/latex] .
Не нашли ответ?
Ответить на вопрос
Похожие вопросы