C1. а) Решите уравнение sin3x=4sinxcos2x        б) Найдите корни этого уравнения, принадлежащие промежутку (0;3π/2)

C1. а) Решите уравнение sin3x=4sinxcos2x        б) Найдите корни этого уравнения, принадлежащие промежутку (0;3π/2)
Гость
Ответ(ы) на вопрос:
Гость
 sin3x = 4sinx*cos2x 3sinx - 4sin³x = 4sinx*cos²x - 4sinx*sin²x  3sinx - 4sin³x = 4sinx*cos²x - 4sin³x 3sinx = 4sinxcos²x 4sinx*cos²x - 3sinx = 0 sinx*(4cos²x - 3) = 0 1.  sinx = 0       x = Pi*n, n∈Z 2.  4cos²x - 3 = 0      4cos²x = 3      cos²x = 3/4 1) cosx = (√3)/2 x = ±Pi/6+2*Pi*n, n∈Z 2) cosx = -(√3)/2 x = ±5Pi/6 + 2Pi*n, n∈Z Ûßö...=)
Не нашли ответ?
Ответить на вопрос
Похожие вопросы