Дан шестиугольник А1А2А3А4А5А6. Его стороны А1А2и А4А5, А2А3и А5А6, А3А4и А6А1попарно равны
Дан шестиугольник А1А2А3А4А5А6. Его стороны А1А2и А4А5, А2А3и А5А6, А3А4и А6А1попарно равныи параллельны. Используя центральную симметрию, докажите, что диагонали А1А4,А2А5, А3А6данного шестиугольника пересекаются в одной точке.
Ответ(ы) на вопрос:
Гость
Нужно рассмотреть фигуры: А1А3А4А6, А2А3А5А6, А3А4А6А1. Так как по условию стороны ... попарно равны и параллельны, то эти фигуры будут параллелограммами!! у них диагонали точкой пересечения (предположим О) делятся пополам. Рассмотрим А1А3А4А6 у него А1О=А4О=А1А4/2 также А3О=А6О=А3А6/2.
Теперь рассмотрим А2А3А5А6 пусть у него диагонали пересекаются в О1. Тогда А2О1=А5О1=А2А5/2 также А3О1=А6О1=А3А6/2.
Смотрим на последние равенства: А3О=А6О=А3А6/2 и А3О1=А6О1=А3А6/2 и точка О и О1 находятся посередине А3А6 а значит они совпадают.
Всего проведено три диагонали, две из них пересекаются в одной точке, а третья тоже проходит через эту точку по нашему доказательству.
Лучше такой рисунок сделать (обозначение и центральную часть сделать по условию задачи!!!)
Не нашли ответ?
Похожие вопросы