Даны координаты вершин пирамиды ABCD. А(0;0;6), B(1;3;-1), С(4;-1;-3). Вычислить: 1) Объём пирамиды ; 2) Длину ребра AB; 3) Площадь грани ; ПОМОГИТЕ ПОЖАЛУЙСТА

Даны координаты вершин пирамиды ABCD. А(0;0;6), B(1;3;-1), С(4;-1;-3). Вычислить: 1) Объём пирамиды ; 2) Длину ребра AB; 3) Площадь грани ; ПОМОГИТЕ ПОЖАЛУЙСТА
Гость
Ответ(ы) на вопрос:
Гость
а)  1. Нахождение длин ребер и координат векторов x y z Длина ребра Вектор АВ={xB-xA, yB-yA, zB-zA} 2 0 1 2.236067977 Вектор BC={xC-xB, yC-yB, zC-zB} -1 0 -3 3.16227766 Вектор АC={xC-xA, yC-yA, zC-zA} 1 0 -2 2.236067977 Вектор АS={xS-xA, yS-yA, zS-zA} 3 -2 -1 3.741657387 Вектор BS={xS-xB, yS-yB, zS-zB} 1 -2 -2 3 Вектор CS={xS-xC, yS-yC, zS-zC} 2 -2 1 3 Объем пирамиды равен:  (AB{x1, y1, z1} ; AC{x2, y2, z2} ; AS{x3, y3, z3})= x3·a1+y3·a2+z3·a3. Произведение векторов a × b = {ay*bz - az*by; az*bx - ax*bz; ax*by - ay*bx}. Объем пирамиды:                 x     y     z AB*AC:   0    5     0 , V = (1/6) * 10 = 1.6666667. б)длина высоты, опущенной на основание АВС: H=3V/Sосн Высота, опущенная на грань ABC равна:  2. Расстояние d от точки M1(x1;y1;z1) до плоскости Ax + By + Cz + D = 0 равно абсолютному значению величины: Уравнение плоскости AВС: y-1 = 0. с) уравнение плоскости, проходящей через точки А, В, С:Уравнение плоскости AВС: y-1 = 0. Уравнение плоскостей граней . Пусть (х1, х2, х3), (у1, у2, у3) и (z1, z2, z3) – координаты первой, второй и третьей точки соответственно. (x-x1)*(у2-y1)*(z3-z1) – (x-x1)*(z2-z1)*(y3-y1) – (y-y1)*(x2-x1)*(z3-z1) + (y-y1)*(z2-z1)*(x3-x1) + (z-z1)*(x2-x1)*(y3-y1) – (z-z1)*(y2-y1)*(x3-x1) = 0. Уравнение плоскости грани ABC: x -x1 0 0 y y1 -4 1 z z1 0 0   0 0     5 -5     0 0             0 x + 5 y + 0 z + -5 = 0 После сокращения на 5, получаем АВС: у - 1 = 0. d) угол между прямой АД и плоскостью АВС:                                                       синус            радиан        градус  10  3.741657  5  18.70829     0.534522     0.563943     32.31153 e) угол между прямыми АВ и АС: AС*AВ     |AС*AВ|     cos α       радиан      градусы       sin α       0               5              0         1.570796      90                  1
Не нашли ответ?
Ответить на вопрос
Похожие вопросы