Доказать  n^(5)-n  делится на 5.

Доказать   n^(5)-n  делится на 5.
Гость
Ответ(ы) на вопрос:
Гость
n^5-n=n(n^4-1)=n(n^2-1)(n^2+1) и пусть n-целое числоЕсли n=0, то n^5-n=0 и это выражение делится на 5. Если последняя цифра числа n равна нулю то первый множитель n кратен 10 и поэтому всё выражение делится на 5Если n=1 или последняя цифра числа n оканчивается 1, то второй множитель (n^2-1) кратен 10, а значит всё выражение делится на 5.Если n=2 или последняя цифра числа n оканчивается 2, то третий множитель (n^2+1) кратен 5, а значит всё выражение делится на 5. Если n=3 или последняя цифра числа n оканчивается 3, то третий множитель (n^2+1) кратен 10, а значит всё выражение делится на 5. Если n=4 или последняя цифра числа n оканчивается 4, то второй множитель (n^2-1) кратен кратен 5, а значит всё выражение делится на 5. Если n=5 или последняя цифра числа n оканчивается 5, то первый множитель n кратен 5, а значит всё выражение делится на 5. Если n=6 или последняя цифра числа n оканчивается 6, то второй множитель (n^2-1) кратен кратен 5, а значит всё выражение делится на 5.Если n=7 или последняя цифра числа n оканчивается 7, то третий множитель (n^2+1) кратен кратен 10, а значит всё выражение делится на 5. Если n=8 или последняя цифра числа n оканчивается 8, то третий множитель (n^2+1) кратен кратен 5, а значит всё выражение делится на 5.Если n=9 или последняя цифра числа n оканчивается 9, то второй множитель (n^2-1) кратен кратен 10, а значит всё выражение делится на 5.Итак при любом целом n, n^5-n делится на 5
Не нашли ответ?
Ответить на вопрос
Похожие вопросы