Докажите что ни при каком натуральном n числа: 1) 3n+2 2) 5n+3 3) 7n+5 не являются точными квадратами
Докажите что ни при каком натуральном n числа:
1) 3n+2
2) 5n+3
3) 7n+5
не являются точными квадратами
Ответ(ы) на вопрос:
Гость
Известно следующее свойство точных квадратов: квадрат остатка, от деления точного квадрата на любое (натуральное) число, дает тот же остаток при делении на то же число.
3n+2 есть некое число, которое при делении на 3 дает остаток 2.
Квадрат этого остатка равен 4 и при делении на 3 дает остаток 1.
Остатки не равны, значит число 3n+2 не может быть точным квадратом.
Остальные- аналогично.
Не нашли ответ?
Похожие вопросы