Две колхозные бригады, работая вместе, могут выполнить некоторую работу за 6 дней. Если же обе бригады будут работать вместе только 50% этого срока, после чего дона из бригад прекратит работу, то второй бригаде для окончания ра...

Две колхозные бригады, работая вместе, могут выполнить некоторую работу за 6 дней. Если же обе бригады будут работать вместе только 50% этого срока, после чего дона из бригад прекратит работу, то второй бригаде для окончания работы понадобится еще 5 дней. За сколько дней может выполнить эту работу каждая бригада в отдельности?
Гость
Ответ(ы) на вопрос:
Гость
х- количество дней за которые первая бригада может выполнить работу у- количество дней за которые вторая бригада может выполнить работу, из условия задачи имеем 1 / (1/х + 1/у) =6   или 1 = 6/х + 6/у 1/2 / 1/у =5    1/2 = 5/у , умножим левую и правую часть уравнения на  2у ,получим : у = 10 - за столько дней вторая бригада может выполнить всю работу Подставим полученное значение "у" в первое уравнение  1 = 6/х + 6/у      1 = 6/х + 6/10 1 -6/10 = 6/х      4/10 =6/х  , умножим правую и левую часть уравнения на   10х , получим  4х =60       х = 15 - за столько дней первая бригада может выполнить всю работу
Не нашли ответ?
Ответить на вопрос
Похожие вопросы