Двум рабочим была поручена работа. Второй приступил к работе на час позже первого. Через 3 ч. после того, как первый приступил к работе, им осталось выполнить 9/20 всей работы. По окончанию работы оказалось, что каждый выполнил...

Двум рабочим была поручена работа. Второй приступил к работе на час позже первого. Через 3 ч. после того, как первый приступил к работе, им осталось выполнить 9/20 всей работы. По окончанию работы оказалось, что каждый выполнил половину всей работы. За сколько часов каждый, работая отдельно, может выполнить свою работу?
Гость
Ответ(ы) на вопрос:
Гость
Примем всю работу за 1. Пусть первый, работая отдельно, может выполнить работу за х часов, тогда его производительность (1/x) часть работы в час.  Пусть второй, работая отдельно, может выполнить работу за у часов, тогда его производительность (1/у) часть работы в час. Первый работал 3 часа с производительностью (1/х), второй 2 часа с производительностью (1/у). Вместе они выполнили 9/20 . Уравнение: 3·(1/х)  + 2 ·(1/у) = 9/20; Пусть через t часов после начала работы первого они выполнили всю работу. Второй при этом работал (t-1) час. Каждый выполнил половину всей работы. Уравнение t·(1/x)=1/2      ⇒    t = x/2 (t-1)·(1/y)=1/2 (x/2)-1=y/2 y= x-2 Подставим у=х-2 в первое уравнение: 3·(1/х)  + 2/(х-2) = 9/20; 60(х-2) + 40х=9х(х-2); 9х²-118х+120=0 D=(-118)²-4·9·120=13924-4320=9604=98² x=(118+98)/18=12  или  х=(118-98)/18=10/9 второй корень чуть больше 1 и не удовлетворяет условию задачи у=х-2=12-2=10 Ответ. Первый за 12 часов, второй за 10 часов.  
Не нашли ответ?
Ответить на вопрос
Похожие вопросы