Экспресс отходит через 6 минут после автобуса, и догоняет автобус через 24 минуты. Если бы скорость автобуса была вдвое меньше, через сколько минут после отхода экспресс догнал бы поезд.срочно 

Экспресс отходит через 6 минут после автобуса, и догоняет автобус через 24 минуты. Если бы скорость автобуса была вдвое меньше, через сколько минут после отхода экспресс догнал бы поезд. срочно 
Гость
Ответ(ы) на вопрос:
Гость
Для удобства обозначим скорость автобуса х, а скорость экспресса у. Автобус до места встречи двигался 6+24=30 мин. = 1/2 часа Экспресс до места встречи двигался 24 мин. = 6/15 часа - по условию. Оба они проехали одинаковое расстояние, поэтому можно записать 1)   (1/2)*х=(6/15)*у Далее запишем формулу при уменьшении скорости автобуса в 2 раза. За 6 мин. = 1/10 часа автобус проедет (х/2)*(1/10) = х/20 км За время t до встречи с экспрессом автобус проедет  (x/2)*t=xt/2 км Экспресс за время t проедет yt км, можно записать: 2) (x/20)+(xt/2)=yt Из этой формулы выразим t: (x+10xt)/20=yt x+10xt=20yt x=20yt-10xt x=t(20y-10x) 3)  t=x/(20y-10x) Теперь из формулы 1) выразим х: x=12y/15 и подставим в формулу 3) [latex]t= \frac{ \frac{12}{15}y }{20y-10*( \frac{12}{15})y } = \frac{ \frac{12}{15}y }{20y- \frac{120}{15}y } = \frac{ \frac{12}{15}y }{ \frac{300y-120y}{15} }= \frac{ \frac{12}{15}y }{ \frac{180}{15} y}= \frac{12}{180}= \frac{1}{15} [/latex] часа или 4 минуты Ответ: если бы скорость автобуса уменьшилась вдвое экспресс догнал бы его через 4 минуты.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы