К графику функции f(x) в точке A(2;3) проведена касательная, уравнение которой y=-4x+11. Найдите производную f'(2). С решением. Ответ должен быть -4

К графику функции f(x) в точке A(2;3) проведена касательная, уравнение которой y=-4x+11. Найдите производную f'(2). С решением. Ответ должен быть -4
Гость
Ответ(ы) на вопрос:
Гость
f '(x₀) является угловым коэффициентом касательной к графику функции у =f(x) в точке x₀. Угловой коэффициент прямой равен тангенсу угла, образованного этой прямой с положительным направлением оси Ох.k= f '(x₀)=tgα, где x₀- абсцисса точки касания, а α- угол наклона касательной к оси Ох. С другой стороне [latex]tg \alpha = \frac{11}{ \frac{11}{4} } =4[/latex], значит: f '(2)=tgα=2
Не нашли ответ?
Ответить на вопрос
Похожие вопросы