Как из 9 монет найти 1 более легкую (фальшивую) за два взвешивания на чашечных весах без гирь?
Как из 9 монет найти 1 более легкую (фальшивую) за два взвешивания на чашечных весах без гирь?
Ответ(ы) на вопрос:
Гость
берем 6 из 9 монет. кладем 3 монеты на одну чашку весов, 3 - на другую. это ПЕРВОЕ взвешивание. Вариант 1: одна чашка перевешивает, значит, фальшивка во второй, верно? ТОГДА: берем 3 монеты из 2-й чашки, далее выбираем любые две и кладем по одной на каждую чашку весов. Это ВТОРОЕ взвешивание. Если они равны по массе, значит, фальшивая - та, что осталась, иначе фальшивая та, что на чашке будет с "недовесом". Вариант 2: после взвешивания "3 против 3" чашки в равновесии, значит, фальшивка - среди 3-х оставшихся. Берем эти 3 оставшихся монеты, а далее - см. ТОГДА!
Гость
делишь монеты на 3 кучки по 3 монеты, взвешиваешь 2 любые кучки.. . если равные убираешь в сторону, или находишь более легкую, затем из этой более легкой берешь 2 любые монеты и взвешиваешь и смотришь результат : если равновесие то оставшаяся монета фальшивая или которая легче на весах
Гость
1 взвешивание на противоположные чаши весов кладём по три монеты - ещё три оставляем Если одна чаша перевесит, то на противоположной чаше есть фальшивая, если чаши уравновесились, то фальшивка в третьей кучке 2 взвешивание кладём по монете на чашу и одну оставляем далее по той же схеме.
Не нашли ответ?
Похожие вопросы