Как найти p и q, если парабола y=х^2+pх+q касается оси абсцисс в точке x=2? Пожалуйста, кто знает, напиши полное решение, ибо мне не понятно как это делается.. . И еще, прошу не писать только ответ к задаче, а так же глупые отв...
Как найти p и q, если парабола y=х^2+pх+q касается оси абсцисс в точке x=2?
Пожалуйста, кто знает, напиши полное решение, ибо мне не понятно как это делается.. .
И еще, прошу не писать только ответ к задаче, а так же глупые ответы, типа: "Какой это класс? ", "Открой учебник алгебры и посмотри" и т. д. и т. п.
Меня не было на этой теме, поэтому я сейчас наверстываю упущенное самостоятельно.
Надеюсь на вашу помощь, заранее спасибо!
Ответ(ы) на вопрос:
парабола касается оси абсцисс в точке x=2, значит в этой точке у нее вершина. Ее координаты (2,0)
раз вершина, то есть формула по определению координаты х вершины
[latex]x_0=\dfrac{-b}{2a}=\dfrac{-p}{2}[/latex]
по условию у нас [latex]x_0=2[/latex]
значит
[latex]\dfrac{-p}{2}=2\\ \\ p=-4[/latex]
при х=2 значение y=0
[latex]y(2)=2^2-4\cdot 2+q=-4+q\\ y(2)=0\\ -4+q=0\\ q=4\\ \\ \\ y(x)=x^2-4x+4[/latex]
ЗЫ: можно было догадаться, что если вершина параболы (2,0) значит парабола y=x^2 смещена вправа на 2 единицы, т.е y=(x-2)^2=x^2-4x+4
Не нашли ответ?
Похожие вопросы