Кусок сплава меди и цинка, содержавший 10 кг цинка, сплавили с 10 кг меди. Полученный сплав содержит на 5% меди больше, чем исходный. Сколько килограммов меди содержал исходный кусок сплава

Кусок сплава меди и цинка, содержавший 10 кг цинка, сплавили с 10 кг меди. Полученный сплав содержит на 5% меди больше, чем исходный. Сколько килограммов меди содержал исходный кусок сплава
Гость
Ответ(ы) на вопрос:
Гость
Примем за х содержание меди в первоначальном сплаве. На основании задания составляем уравнение содержания меди: [latex] \frac{x}{x+10} +0,05= \frac{x+10}{x+10+10} .[/latex] Приводим к общему знаменателю и числитель приравниваем нулю. Получаем квадратное уравнение: х² + 30х - 1800 =0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=30^2-4*1*(-1800)=900-4*(-1800)=900-(-4*1800)=900-(-7200)=900+7200=8100;Дискриминант больше 0, уравнение имеет 2 корня: x₁=(2root8100-30)/(2*1)=(90-30)/2=60/2=30;x₂=(-2root8100-30)/(2*1)=(-90-30)/2=-120/2=-60 (отрицательный корень отбрасываем). Ответ: меди в первоначальном сплаве было 30 кг. Можно проверить: (30/40) + 0,05 = (40/50). 0,75 + 0,05 = 0,8. 0,8 = 0,8. То есть, первоначальное содержание меди было 75 %, стало 80 %, или на 5 % больше.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы