Log(2)(7-x)+log(2)x больше =1+log(2)(3) log(0,5)(3x-1)-log(0,5)(x-1) меньше =1+log(2)(3)
Log(2)(7-x)+log(2)x>=1+log(2)(3)
log(0,5)(3x-1)-log(0,5)(x-1)<=1+log(2)(3)
Ответ(ы) на вопрос:
Гость
[latex]1)[/latex]
[latex] log_{2} (7-x)+ log_{2}x \geq 1+ log_{2}3[/latex]
ОДЗ:
[latex] \left \{ {{7-x\ \textgreater \ 0} \atop {x\ \textgreater \ 0}} \right. [/latex]
[latex] \left \{ {{x\ \textless \ 7} \atop {x\ \textgreater \ 0}} \right. [/latex]
[latex]x[/latex] ∈ [latex](0;7)[/latex]
[latex]log_{2} (7-x)+ log_{2}x \geq log_{2}2+ log_{2}3[/latex]
[latex]log_{2} (7x-x^2) \geq log_{2}6[/latex]
[latex]7x-x^2 \geq6[/latex]
[latex]- x^{2} +7x-6 \geq 0[/latex]
[latex] x^{2} -7x+6 \leq 0[/latex]
[latex]D=(-7)^2-4*1*6=49-24=25=5^2[/latex]
[latex]x_1= \frac{7+5}{2}=6 [/latex]
[latex]x_2= \frac{7-5}{2}=1 [/latex]
+ - +
----------[1]--------------[6]-------------
////////////////////
С учётом ОДЗ получаем
Ответ: [latex][1;6][/latex]
[latex]2)[/latex]
[latex]log_{0.5} (3x-1)- log_{0.5}(x-1) \leq 1+ log_{2}3[/latex]
ОДЗ:
[latex] \left \{ {{3x-1\ \textgreater \ 0} \atop {x-1\ \textgreater \ 0}} \right. [/latex]
[latex] \left \{ {{3x\ \textgreater \ 1} \atop {x\ \textgreater \ 1}} \right. [/latex]
[latex] \left \{ {{x\ \textgreater \ \frac{1}{3} \atop {x\ \textgreater \ 1}} \right. [/latex]
[latex]x[/latex] ∈ [latex](1;+[/latex] ∞ [latex])[/latex]
[latex]log_{0.5} \frac{3x-1}{x-1} \leq log_{2}2 + log_{2}3[/latex]
[latex]log_{ 2^{-1} } \frac{3x-1}{x-1} \leq log_{2}6 [/latex]
[latex]-log_{ 2 } \frac{3x-1}{x-1} \leq log_{2}6 [/latex]
[latex]log_{ 2 } \frac{x-1}{3x-1} \leq log_{2}6 [/latex]
[latex] \frac{x-1}{3x-1} \leq 6 [/latex]
[latex] \frac{x-1}{3x-1} -6\leq 0[/latex]
[latex] \frac{x-1-6(3x-1)}{3x-1} \leq 0[/latex]
[latex] \frac{x-1-18x+6}{3x-1} \leq 0[/latex]
[latex] \frac{5-17x}{3x-1} \leq 0[/latex]
Найдём нули числителя и знаменателя:
[latex]5-17x=0[/latex] [latex]3x-1=0[/latex]
[latex]17x=5[/latex] [latex]3x=1[/latex]
[latex]x= \frac{5}{17} [/latex] [latex]x= \frac{1}{3} [/latex]
- + -
-----------------[5/17]-----------(1/3)----------------
///////////////////// ///////////////////////
[latex]x[/latex] ∈ [latex](-[/latex] ∞ [latex]; \frac{5}{17} ][/latex] ∪ [latex]( \frac{1}{3};+ [/latex] ∞ [latex])[/latex]
С учётом ОДЗ получаем
Ответ: [latex](1;+[/latex] ∞ [latex])[/latex]
Не нашли ответ?
Похожие вопросы