На гладкой горизонтальной поверхности покоится клин массой M. На грань составляющей угол 30 градусов с горизонтом падает шар массой m со скоростью V. В результате клин начинает двигаться. Определите скорость клина. Время удара ...

На гладкой горизонтальной поверхности покоится клин массой M. На грань составляющей угол 30 градусов с горизонтом падает шар массой m со скоростью V. В результате клин начинает двигаться. Определите скорость клина. Время удара мало, удар считать абсолютно упругим
Гость
Ответ(ы) на вопрос:
Гость
Если резко ударить мотком по лежащей на полу доске – то она подскочит. Это произойдет потому, что молоток передаст доске импульс, с которым она частично упруго провзаимодействует с полом и отскочит. Примерно такие же события здесь будут происходить между клином и горизонтальной поверхностью. Клин либо отскочит, если он провзаимодействует с поверхностью упруго, либо он просто потеряет энергию вертикального импульса при неупругом взаимодействии с горизонтальной поверхностью. А поэтому было бы ошибкой учесть только горизонтальную скорость клина в энергетическом уравнении. Ещё раз, как именно клин после удара будет взаимодействовать с горизонтальной поверхностью – мы не знаем (будет скакать или просто будет двигаться горизонтально), поскольку нам не заданы параметры взаимодействия клина и поверхности (абсолютно-упругое, абсолютно-неупругое и т.п.), но в любом случае, нам необходимо учесть часть кинетической энергии, которую будет нести вертикальный (!) импульс клина. Что бы развеять сомнения, добавлю, что, поскольку мы считаем удар мгновенным, то в тот момент, когда шар УЖЕ оторвётся от верхней поверхности – нижняя поверхность клина ЕЩЁ «не будет» знать, что клин уже движется вниз, поскольку сигнал (в виде упругой волны) о верхнем взаимодействии ещё не дойдёт до дна. Шар взаимодействует с клином точно поперёк их общей поверхности в момент контакта. А поверхность эта сориентирована к горизонту под углом 30°. Стало быть, сила, действующая на клин – будет придавать вертикальный импульс и скорость в √3 раза больший, чем горизонтальный импульс и скорость. Обозначим горизонтальную скорость клина, как – u, тогда его вертикальная скорость √3u . Будем считать, что скорость шара после отскока направлена вбок и ВВРЕХ. Именно из этих соображений далее будем записывать законы сохранения (если получится отрицательное значение скорости, то значит, она направлена – вниз). Обозначим горизонтальную составляющую конечной скорости шара, как vx, а вертикальную, как vy. Из закона сохранения импульса по горизонтали ясно, что: mvx = Mu ; vx = [M/m] u ; Из закона сохранения импульса по вертикальной оси найдём vy: mV = M√3u – mvy ; vy = √3[M/m]u – V ; Из закона сохранения энергии найдём горизонтальную скорость клина: mV² = mvx² + mvy² + Mu² + M (√3u)² ; mV² = [M²/m] u² + m ( √3[M/m]u – V )² + 4Mu² ; mV² = [M²/m]u² + 3[M²/m]u² – 2√3MuV + mV² + 4Mu² ; 0 = 4[M²/m]u² – 2√3MuV + 4Mu² ; √3V = 2( [M/m] + 1 ) u ; u = √3V/[2(1+M/m)] ; Потеря энергии: Eпот = M (√3u)²/2 = 9MV²/[8(1+M/m)²] = = 9m²V²/[8M(1+m/M)²] = mV²/2 * 9m/[4M(1+m/M)²] ; Eпот = Eнач * 9m/[4M(1+m/M)²] где Eнач – начальная кинетическая энергия. При m << M    :   Eпот —> 0 ;     (проверка очевидного предельного перехода) vx = [M/m] u = [M/m] √3V/[2( [M/m] + 1 )] ; vx = √3V/[2(1+m/M)] ; vy = √3[M/m]u – V = √3[M/m] √3V/[2( [M/m] + 1 )] – V = = 3V/[2+2m/M] – V = [3V–2V–2Vm/M]/[2+2m/M] ; vy = V[1–2m/M]/[2(1+m/M)] ; Тангенс угла отскока: tgφ = vy/vx = [1–2m/M]/√3 ; в частности, при M = 2m  шарик отскочит горизонтально. При m << M    :   tgφ —> 1/√3    ;    φ —> 30° (проверка очевидного предельного перехода) ОТВЕТ: u = √3V/[2(1+M/m)] .
Не нашли ответ?
Ответить на вопрос
Похожие вопросы