Ответ(ы) на вопрос:
Ответ
log(36) 9 =
= log36 (3^2) =
= 2log(36) 3 =
= 2/log(3) 36 =
= 2/log(3) 9*4 =
= 2/[log(3) 9 + log(3) 4] =
= 2/[log(3) 3^2 + log(3) 2^2] =
= 2/[2*log(3) 3 + 2*log(3) 2] =
= 2/[2*{1 + log(3) 2}] =
= 1/[1 + log(3) 2] (1)
log(36) 8=m
log(36) 2^3 =
= 3*log(36) 2 =
= 3/log(2) 36 =
= 3/log(2) 9*4 =
= 3/[log(2) 3^2 + log(2) 2^2] =
= 3/[2*{log(2) 3 + lg(2) 2}] =
= 3/[2*{log(2) 3 + 1}] =
= 3/[2*{1/log(3) 2 + 1}] =
= 3*log(3) 2 /[2*(1+log(3) 2] = m
Для простоты пусть log(3) 2 = t =>
3t /(2*(1+t)) = m
3t = m*2(1+t)
3t = 2m + mt
3t - mt = 2m
t*(3-m) = 2m
t = 2m/(3-m)
В уравнение (1)
1/[1 + log(3) 2] = 1/[1 + t] = 1/[1 + 2m/(3-m)] = (3-m) /(3-m+2m) =
= (3-m)/(3+m)
Не нашли ответ?
Похожие вопросы