Найдите наибольшее и наименьшее значение функции f(x)= x^5+2x^3+2x-10 на отрезке [-1;1]
Найдите наибольшее и наименьшее значение функции f(x)= x^5+2x^3+2x-10 на отрезке [-1;1]
Ответ(ы) на вопрос:
[latex]f(x)=x^5+2x^3+2x-10,\,\,\,\,\,\,[-1;1][/latex]
1. Определим производную функцию
[latex]f'(x)=(x^5)'+(2x^3)'+(2x)'-(10)'=5x^4+6x^2+2[/latex]
2. Приравняем производную к нулю
[latex]f'(x)=0 \\ 5x^4+6x^2+2=0[/latex]
Проанализировав левую часть выражения, видно что при x ∈ R выражение будет неотрицательным, следовательно производная критических точек не имеет.
3. Вычислим значение функции в точке х = -1 и х = 1
[latex]f(-1)=(-1)^5+2\cdot(-1)^3+2\cdot(-1)-10=-15 \\ f(1)=1^5+2\cdot1^3+2\cdot1-10=-5[/latex]
Итак, наименьшее значение функции - (-15), а наибольшее - (-5)
Не нашли ответ?
Похожие вопросы