Найдите площадь фигуры,ограниченной линиями: y=5x-x^2 и y=x+3

Найдите площадь фигуры,ограниченной линиями: y=5x-x^2 и y=x+3
Гость
Ответ(ы) на вопрос:
Гость
Решение Найдём пределы интегрирования: 5х - x^2 = x + 3 x^2 - 4x + 3 = 0 x1 =1 x2 =3 Вычисляем интеграл  (5x - х^2 - x - 3)dx в пределах от 1 до 3:  интеграл  (-x^2 + 4x -3)dx = -(x^3)/3 +  4*x^2) = - (x^3)/3 +  2*(x^2) - 3x Применим формулу Ньютона-Лейбница и подставляем пределы интегрирования: (-3^3/3 + 2*3^2 -3*3) - (1/3 + 2 - 3) = 18 - 2/3 = 17 (1/3) 
Не нашли ответ?
Ответить на вопрос
Похожие вопросы