Найдите производную функции f(x)=x^6-13^4+11 f(x)=x^3+sinx f(x)=2x^5-4/x^2 f(x)=(2x+1)*x^3 f(x)=(4x+3)^6 f(x)=2-2cosx f(x)=корень x^2-8 f(x)=1/2sin2x f(x)=(3x-5)^3+1/(3-x)^2 f(x)=sin3x-tgx f(x)=x^2cos(x/2-п/4)

Найдите производную функции f(x)=x^6-13^4+11 f(x)=x^3+sinx f(x)=2x^5-4/x^2 f(x)=(2x+1)*x^3 f(x)=(4x+3)^6 f(x)=2-2cosx f(x)=корень x^2-8 f(x)=1/2sin2x f(x)=(3x-5)^3+1/(3-x)^2 f(x)=sin3x-tgx f(x)=x^2cos(x/2-п/4)
Гость
Ответ(ы) на вопрос:
Гость
1)6x^5 2)3x^2+cosx 3)10x^4+8x^-3 4)2x^3+3x^2(2x+1)=2x^3+6x^3+3x^2=8x^3+3x^2=x^2(8x+3) 5)6(4x+3)^5 6)2sinx 7)1/2√x² 8)cos^2x-sin^x 9)3(3x-5)-2(3-x)^-3 10)3cosx-4cos^2x-1/cosx
Гость
f(x)=x^6-13^4+11 f`=6x^5 f(x)=x^3+sinx f`=3x^2+cos(x) f(x)=2x^5-4/x^2 f`=10x^4+8/x^3 f(x)=(2x+1)*x^3 f`=2x^3+3(2x+1)*x^2=8x^3+3x^2 f(x)=(4x+3)^6 f`=24(4x+3)^5 f(x)=2-2cosx f`=2sin(x) f(x)=корень (x^2-8) f`=x/корень (x^2-8) f(x)=1/(2sin2x) f`=-2*cos(2x)*2/(2sin2x)^2=-cos(2x)/(sin^2(2x) f(x)=(3x-5)^3+1/(3-x)^2 f`=9*(3x-5)^2-2/(x-3)^3=9*(3x-5)^2+2/(3-x)^3 f(x)=sin3x-tgx f`=3cos(3x)-1/cos^2(x) f(x)=x^2cos(x/2-п/4) f`=2x*cos(x/2-п/4)-x^2*sin(x/2-п/4)*1/2
Не нашли ответ?
Ответить на вопрос
Похожие вопросы