Найдите промежутки убывания и возрастания функции [latex]f(x)=8-6 x^{2} - x^{4}[/latex]

Найдите промежутки убывания и возрастания функции [latex]f(x)=8-6 x^{2} - x^{4}[/latex]
Гость
Ответ(ы) на вопрос:
Гость
Надо найти критические точки - найти производную и приравнять её 0. f'(x) = -4x³-12x = 0 -4х(х² + 12) = 0 х₁ = 0 х² = -12 - не имеет решения. Значит, имеется только одна критическая точка - х = 0. Для определения свойства этой точки надо определить значения производной вблизи критической точки. f'(-1) = -4*1-12*(-1) = -4+12 = 8 f'(1) = -4*1-12*1 = -16. Переход с + на -   это признак максимума функции. Слева от точи х = 0 производная положительна, значит, функция возрастает. Справа - отрицательна, функция убывает.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы