Найдите сумму первых десяти членов арифметической прогрессии, удовлетворяющей:a1+a3+a5=24, a1^2+a2^2+a3^2=93

Найдите сумму первых десяти членов арифметической прогрессии, удовлетворяющей: a1+a3+a5=24, a1^2+a2^2+a3^2=93
Гость
Ответ(ы) на вопрос:
Гость
Формула n-го члена арифметической прогрессии: a(n)=a(1)+d*(n-1) a(1)+a(3)+a(5)=a(1)+a(1)+2d+a(1)+4d=3*a(1)+6*d=24 Отсюда a(1)+2d=8, a(1)=8-2d Из второго уравнения: a(1)^2+a(2)^2+a(3)^2=a(1)^2+(a(1)+d)^2+(a(1)+2d)^2= a(1)^2+a(1)^2+2*a(1)d+d^2+a(1)^2+4*a(1)d+4*d^2= 3*a(1)^2+6*a(1)d+5*d^2=93 Подставим во второе уравнение a(1)=8-2d: 3*(8-2*d)^2+6*(8-2*d)*d+5*d^2=93 3*(4*d^2-32*d+64)+6*(8*d-2*d^2)+5*d^2=93 12*d^2-96*d+192+48*d-12*d^2+5*d^2-93=0 5*d^2-48*d+99=0 D=(-48)^2-4*5*99=18^2 d1,2=(48+-√(18^2))/(2*5) d1=(48+18)/10=6.6 => a(1) = 8-2*6.6=-5.2 d2=(48-18)/10=3 => a(1) = 8-2*3=2 S(n) = (2*a(1) + d*(n-1)) * n / 2 - сумма арифметической прогрессии 1) При a(1)=-5.2, d=6.6 S(10) = (2*(-5.2) + 6.6*(10-1))*10 / 2 = 245 2) При a(1)=2, d=3 S(10) = (2 * 2 + 3 * (10 - 1)) * 10 / 2 = 155 Ответ: 245 или 155.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы