Одна группа туристов проехала 16 км по озеру а другая 8 км по течению и 8 км против течения реки. Скорость течения реки 2 км/ч . Какая из групп затратила на весь путь больше времени если известно что они использовали моторные л...

Одна группа туристов проехала 16 км по озеру а другая 8 км по течению и 8 км против течения реки. Скорость течения реки 2 км/ч . Какая из групп затратила на весь путь больше времени если известно что они использовали моторные лодки имеющие одинаковую собственную скорость.  
Гость
Ответ(ы) на вопрос:
Гость
Решение: Пусть х - скорость лодки. Первая группа потратила: [latex]\frac{16}{x} \ \ \ \ \ (1)[/latex] Вторая группа потратила [latex]\frac{8}{x+2} +\frac{8}{x-2}\ \ \ \ \ (2)[/latex] Преобразуем (1) : [latex]\frac{16}{x} = \frac{16x}{x^2}[/latex] Преобразуем (2) : [latex]\frac{8}{x+2} +\frac{8}{x-2} = \frac{8(x-2)+8(x+2)}{(x+2)(x-2)} = \frac{16x}{x^2-4}[/latex] Поскольку скорость лодки х>2 (иначе она не могла бы плыть против течения), то выражение [latex]x^2-4 < x^2[/latex] и значит: [latex]\frac{16x}{x^2-4} > \frac{16x}{x^2}[/latex] то есть вторая группа потратила больше времени.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы