Определите промежутки монотонности функции (аналитически) а) y=4-3*корень(x-5) б)y=-3+5*корень(2-x) прошу расписать подробно, если это возможно

Определите промежутки монотонности функции (аналитически) а) y=4-3*корень(x-5) б)y=-3+5*корень(2-x) прошу расписать подробно, если это возможно
Гость
Ответ(ы) на вопрос:
Гость
алгоритм такой: находим производную и определяем на каких промежутках производная убывает/возрастает - это и есть промежутки монотонности; а) y'=-3/2*кор(x-5) -3/2*кор(x-5)=>0 кор(x-5)=>0 x=>5 но по определению кв корня он всегда больше или равен 0, значит функция монотонна на всей своей области значений и так как еще есть -3, то эту функция убывающая: E(y)=[5;+беск) - это и будет промежуток монотонности Ответ: [5;+беск) - убывает б) y'=5/2кор(2-x) 5/2кор(2-x)>=0 2-x>=0 x<=2 значит будет тоже самое: E(y)=(-беск;2] - это промежуток монотонности, и на нем функция убывает; Ответ: (-беск;2] - убывает
Не нашли ответ?
Ответить на вопрос
Похожие вопросы