Парабола на координатной плоскости называется красивой, если её вершина и две точки пересечения с осью абсцисс образуют равносторонний треугольник. Доказать, что дискриминанты квадратных трехчленов, графиками которых являются к...
Парабола на координатной плоскости называется красивой, если её вершина и две точки пересечения с осью абсцисс образуют равносторонний треугольник.
Доказать, что дискриминанты квадратных трехчленов, графиками которых являются красивые параболы, равны. Найти значение этих дискриминантов.
Ответ(ы) на вопрос:
Вершины треугольника - это точки на оси абсцисс [latex]x_1,\; \; x_2[/latex] и вершина параболы , точка с координатами [latex](x_{v},\; y_{v})[/latex] .
Квадратичная функция: [latex]y=ax^2+bx+c[/latex] .
Стороны треугольника равны
[latex]|x_2-x_1|=|\frac{-b+\sqrt{D}}{2a}-\frac{-b-\sqrt{D}}{2a}|=|\frac{2\sqrt{D}}{2a}|=|\frac{\sqrt{D}}{a}|=\frac{\sqrt{D}}{|a|}[/latex]
Ордината вершины параболы является высотой равностороннего треугольника со стороной а:
[latex]h=\frac{\sqrt3\cdot a}{2}=\frac{\sqrt3|x_2-x_1|}{2}=\frac{\sqrt3}{2}\cdot \frac{\sqrt{D}}{|a|}[/latex]
С другой стороны ордината вершины находится, подставив в функцию абсциссу вершины:
[latex]h>0\; \to \; h=|y_{v}|=|ax_{v}^2+bx_{v}+c|=|y(-\frac{b}{2a})|=\\\\=|a(-\frac{b}{2a})^2+b\cdot \frac{-b}{2a}+c|=|\frac{ab^2-2ab^2+4a^2c}{4a^2}|=|\frac{-a(b^2-4ac)}{4a^2}|=\\\\=|-\frac{D}{4a}|=|\frac{D}{4a}|\\\\[/latex]
[latex]|\frac{D}{4a}|=\frac{\sqrt3}{2}\cdot \frac{\sqrt{D}}{|a|}\; \to \\\\\frac{|D|}{4|a|}-\frac{\sqrt3}{2}\cdot \frac{\sqrt{D}}{|a|}}=0\\\\\frac{\sqrt{D}}{2|a|}(\frac{\sqrt{D}}{2}-\sqrt3)=0\; \; \to \; \; \\\\\sqrt{D}\ne 0,\; |a|\ne 0,\; \; \frac{\sqrt{D}}{2}-\sqrt3=0\\\\\sqrt{D}=2\sqrt3,\\\\ D=(2\sqrt3)^2=12[/latex]
Не нашли ответ?
Похожие вопросы