Первый и второй насосы наполняют бассейн за 6 минут, второй и третий — за 7 минут, а первый и третий — за 21 минуту. За сколько минут эти три насоса заполнят бассейн, работая вместе?
Первый и второй насосы наполняют бассейн за 6 минут, второй и третий — за 7 минут, а первый и третий — за 21 минуту. За сколько минут эти три насоса заполнят бассейн, работая вместе?
Ответ(ы) на вопрос:
Гость
Решение
Пусть производительность равна 1, тогда производительность
первого насоса равна 1/x,
второго насоса равна 1/y,
третьего насоса равна 1/z
Тогда :
6*(1/x + 1/y) = 1;
7*(1/y + 1/z) = 1
21*(1/x + 1/y) =1.
или
1/x + 1/y = 1/6
1/y + 1/z 1/7
1/x + 1/z) = 1/21
Сложим эти три уравнения:
(2/x + 2/y + 2/z) = 1/6 + 1/7 + 1/21 ;
(1/x + 1/y +1/z) = (1/6 + 1/7 + 1/21) / 2
(1/x + 1/y + 1/z) = (15/42)/2
Теперь находим обратное отношение:
1/((15/42)/2) = 84/15 = 5,6 мин
За 5,6 минут три насоса заполнят бассейн, работая вместе.
Ответ: за 5,6 минут
Не нашли ответ?
Похожие вопросы