Помогите найти из функции f(x)= max, f(x)=min

Помогите найти из функции f(x)= max, f(x)=min
Гость
Ответ(ы) на вопрос:
Гость
Для того, чтобы найти максимум и минимум функции, нужно найти производную функции и найти нули производной, т.е приравнять производную к нулю. Полученные значения будут точками экстремума. Затем значения концов отрезка и полученные экстремумы подставить в функцию и вычислить ее значение: наибольшее будет максимумом, наименьшее - минимумом. 1) f(x)=x^(3/2), [1;9] f'(x)=(x^(3/2))'=3/2x^(1/2); 3/2x^(1/2)=0; x=0. f(0)=x^(3/2)=0; - min f(1)=x^(3/2)=1; f(9)=9^(3/2)=27. - max 2) f(x)=x^(-5); [2;3] f'(x)=(x^(-5))'=-5x^(-6); -5x^(-6)=0; ∅ - на ноль делить нельзя, значит рассмотрим максимум и минимум на концах отрезка. f(2)=2^(-5)=1/32; - max f(3)=3^(-5)=1/243. - min 3) f(x)=x^(-2/3), [8;27] f'(x)=(x^(-2/3))'=-2/3x^(-5/3); -2/3x^(-5/3)=0; ∅ - на ноль делить нельзя, значит рассмотрим максимум и минимум на концах отрезка. f(8)=x^(-2/3)=1/4; - max f(27)=27^(-2/3)=1/9. - min 4) f(x)=x^(-1/4); [1;16] f'(x)=(x^(-1/4))'=-1/4x^(-5/4); -1/4x^(-5/4)=0; ∅ - на ноль делить нельзя, значит рассмотрим максимум и минимум на концах отрезка. f(1)=1^(-1/4)=1; - max f(16)=16^(-1/4)=1/2. - min
Не нашли ответ?
Ответить на вопрос
Похожие вопросы