Помогите пожалуйста , как это правильно разложить на множители ? ( тут именно подкорневое выражение в третьей степени, а не весь корень ) √m³ - √n³ = ??
Помогите пожалуйста , как это правильно разложить на множители ?
( тут именно подкорневое выражение в третьей степени, а не весь корень )
√m³ - √n³ = ??
Ответ(ы) на вопрос:
√(m³) - √(n³) = (√m)³ - (√n)³ = (√m - √n)*((√m)² + √m*√n + (√n)²) = (√m - √n)*(m + √(m*n) + n)
[latex]a^3-b^3=(a-b)(a^2+ab+b^2)[/latex] – формула разности кубов, применимая также и к нашему выражению
[latex]\sqrt{m^3}-\sqrt{n^3}=(\sqrt{m})^3-(\sqrt{n})^3[/latex]
Проверка:
[latex]\sqrt{m^3}=(m^3)^{\frac{1}{2}}=m^{3*\frac{1}{2}}=m^{\frac{3}{2}};\\(\sqrt{m})^3=(m^\frac{1}{2})^3=m^{\frac{1}{2}*3}=m^{\frac{3}{2}}[/latex]
[latex](\sqrt{m})^3-(\sqrt{n})^3=(\sqrt{m}-\sqrt{n})((\sqrt{m})^2+\sqrt{m}*\sqrt{n}+(\sqrt{n})^2)=\\(\sqrt{m}-\sqrt{n})(m+\sqrt{mn}+n)[/latex]
Не нашли ответ?
Похожие вопросы