Помогите пожалуйста В треугольнике ABC проведены медианы AK И BM пересекающиеся в точке О . Докажите что площади треугольников MOK AOB относятся как 1:4
Помогите пожалуйста В треугольнике ABC проведены медианы AK И BM пересекающиеся в точке О . Докажите что площади треугольников MOK AOB относятся как 1:4
Ответ(ы) на вопрос:
Гость
треугольники ABO и KMO подобны. Медианы треугольника в точке пересечения делятся в отношении 2:1 считая от вершины. OM:BO=1:2, OK:AO=1:2. Отношение площадей подобных треугольников равно квадрату коэффициента подобия k=1/2. От сюда следует, что отношение площадей треугольников MOK и AOB равно 1/2 в квадрате. Или же 1:4.
Не нашли ответ?
Похожие вопросы