Помогите ,пожалуйста!1)Два конуса имеют общую высоту и параллельные основания. Найдите объем их общей части, если объем каждого конуса равен V. 2) В конус, объем которого равен V, вписан цилиндр. Найдите объем цилиндра, если от...

Помогите ,пожалуйста!1)Два конуса имеют общую высоту и параллельные основания. Найдите объем их общей части, если объем каждого конуса равен V. 2) В конус, объем которого равен V, вписан цилиндр. Найдите объем цилиндра, если отношение диаметров оснований конуса и цилиндра равно 10:9.
Гость
Ответ(ы) на вопрос:
Гость
1) Общей частью двух конусов, расположенных подобным образом, будет тело вращения, состоящее из двух одинаковых конусов, прилегающих друг к другу основаниями. Рассмотрим осевое сечение образовавшегося тела (см. рис. 1). Δ DBE ~ Δ ABC по двум углам с коэффициентом подобия 1/2. Этот вывод следует из соображений симметрии: образующие одинаковых конусов пересекаются на высоте, равной половине высоты конуса. Объёмы подобных тел относятся как куб коэффициента подобия, т. е. объём «малого» конуса, представленного на рисунке треугольником DBE, равен: (1/2)³∙V = V/8. Окончательно, объём общей части двух конусов равен: 2∙V/8 = V/4. 2) Рассмотрим осевое сечение образовавшегося тела (см. рис. 2). Δ BCF ~ Δ ACG по двум углам. У подобных треугольников отношение любых соответствующих линейных размеров одинаковы. Т. е. CE/CD = BF/AG = 9/10. Откуда CE = 9/10 CD. Следовательно, ED = CD – CE = 1/10 CD. Обозначим диаметр конуса как 10x, тогда диаметр цилиндра будет 9x. Обозначим высоту конуса как 10y, тогда высота цилиндра будет y. Объём конуса равен: V = 1/3∙π∙(10x/2)²∙10y = 250/3∙πx²y. Откуда: πx²y = 3/250∙V. Объём цилиндра равен: π∙(9x/2)²∙y = 81/4∙πx²y = 81/4∙3/250∙V = 243/1000∙V = 0,243V
Не нашли ответ?
Ответить на вопрос
Похожие вопросы