Помогите решить, пожалуйста. Кто объяснит, как решать получит лучший ответ
Помогите решить, пожалуйста. Кто объяснит, как решать получит лучший ответ
Ответ(ы) на вопрос:
Гость
[latex]\cos^2x+3\sin^2x+2\sqrt{3}\sin x\cos x = 3 \\ (1+\cos 2x)/2+3(1-\cos 2x)/2 + \sqrt{3}\sin 2x = 3\\ 2 - \cos 2x+\sqrt{3}\sin{2x} = 3\\ \sqrt{3} \sin 2x-\cos 2x = 1 \\ 2(\frac{\sqrt{3}}{2}\sin 2x - \frac{1}{2}\cos 2x) = 1\\ 2\sin (2x-\pi/6) = 1\\ \sin (2x-\pi/6) = 1/2\\ \left [{{2x-\pi/6=\pi/6+2\pi n} \atop {2x-\pi/6=5\pi/6+2\pi n}} \right. \\\\ \left [{{x=\pi/6+\pi n} \atop {x=\pi/2+\pi n}} \right.[/latex]
Не нашли ответ?
Похожие вопросы