Пожалуйста,решите что сможете,очень нужно

Пожалуйста,решите что сможете,очень нужно
Гость
Ответ(ы) на вопрос:
Гость
Решение 1)  log₂ (3 - x) - log₂ (1 - x) = 3 ОДЗ: 3 - x > 0, x < 3 1 - x > 0, x < 1 x ∈ (- ∞; 1) log₂ (3 - x) =  log₂ (1 - x) +  3log₂ 2 log₂ (3 - x) =  log₂ (1 - x) +  log₂ 2³ log₂ (3 - x) =  log₂ [(1 - x)*8] 3 - x = 8 - 8x 8x - x = 8 - 3 7x = 5 x = 5/7 Ответ: x = 5/7 2)  log₂ x + log₂ (x - 2) ≤ 3 ОДЗ: x > 0 x - 2 > 0, x > 2 x ∈ (2; + ∞)  log₂ x + log₂ (x - 2) ≤ 3log₂ 2  log₂ [x*(x - 2)] ≤ log₂ 2³ так как основание логарифма 2 > 1, то x*(x - 2) ≤  8 x² - 2x - 8  ≤ 0 x₁= - 2 x₂ = 4 x ∈ [- 2; 4] С учётом ОДЗ  x ∈ (2; 4] Ответ: x ∈ (2; 4]
Не нашли ответ?
Ответить на вопрос
Похожие вопросы