Ребят, короче. Как строить графики типа ax^{2} + bx + c ?Способ вроде такой, находим x нулевое и y нулевое и от него дальше идет f(x1) = f(x2) = yи так строить точки на графике? Я просто примерно помню способ, а с ним сделать н...

Ребят, короче. Как строить графики типа ax^{2} + bx + c ? Способ вроде такой, находим x нулевое и y нулевое и от него дальше идет f(x1) = f(x2) = y и так строить точки на графике? Я просто примерно помню способ, а с ним сделать ничего не могу :( Помогите, пожалуйста!
Гость
Ответ(ы) на вопрос:
Гость
1) Решить уравнение типа [latex]ax^2+bx+c=0[/latex] Корни будут являться точками пересечения с осью ОХ 2) Найти вершину Х₀=[latex] \frac{-b}{2a} [/latex]    Y₀- подставляешь значение Х₀ вместо х в само уравнение.  3) Определить направление ветвей если a -  отрицательное значение принимает - ветви вниз, если положительное - ветви наверх 4) Надо знать еще вот что - если дискриминант D >0, то график пересекает ось ОХ в двух точках, если D=0, то в 1 точке, D<0, то вообще не пересекает график ось ОХ
Гость
X0=-b/2a; Y0=подставь Х0 в условие;(это вершина) Дальше возьми 5 точек, так, чтобы вершина была в середине;Влево от нее уменьшаются, вправо увеличиваются( так легче считать) Например вершина(-1;3),тогда точки -3-2-1 0 1 Надеюсь, что пояснила!
Не нашли ответ?
Ответить на вопрос
Похожие вопросы