Решить дробно-рациональное неравенство. х-2 \ (х+2)(х+5) больше или ровно 0. В общем, решить-то я его решил, но проверка не помешает, да и в правильности я не уверен. Получилось от -2 до 2, от 5 до + бесконечности.
Решить дробно-рациональное неравенство.
х-2 \ (х+2)(х+5) больше или ровно 0.
В общем, решить-то я его решил, но проверка не помешает, да и в правильности я не уверен.
Получилось от -2 до 2, от 5 до + бесконечности.
Ответ(ы) на вопрос:
[latex]\\\frac{x-2}{(x+2)(x+5)} \geq 0\\ \\O.D.Z.\\ \\(x+2)(x+5) \neq 0\\ \\x+2 \neq 0\\ \\x_1 \neq -2\\ \\x+5 \neq 0\\ \\x_2 \neq -5\\ \\(x-2)(x+2)(x+5) \geq 0\\[/latex]
Решаем неравенство методом интервалов.
(x-2)(x+2)(x+5)≥0
x_1 = 2
x_2 = -2
x_3 = -5
Точки -2 и -5 выкалываем.
Чертим числовую прямую , отмечаем точки , находим промежуток , к которому принадлежит х.
-5 + -2 - 2 +
------- ------------------ ----------------- --------------------->
x∈(-5;-2) U [2 ; + ∞)
Не нашли ответ?
Похожие вопросы