Решить с объяснением:[latex] \sqrt[3]{x+5} + \sqrt[3]{x+6} = \sqrt[3]{2x+11} [/latex]
Решить с объяснением:
[latex]
\sqrt[3]{x+5} + \sqrt[3]{x+6} = \sqrt[3]{2x+11} [/latex]
Ответ(ы) на вопрос:
Красивое задание.
Не трудно убедится что
корень x=-11/2
Является решением подставим его.
∛(-11/2+5)+∛(-11/2+6)=∛-11+11
-1/∛2 +1/∛2=0 верно
Теперь можно поделить обе части уравнения:
на ∛(2x+11) Конечно в этом случае уравнение будет не совсем равносильным в плане что мы теряем решение
2x+11=0
x=-11/2 Но мы взяли на ус что этот корень есть. Поэтому остальное нам не важно. Тк остальные корни сохранились.
∛(x+5)/(2x+11) +∛(x+6)/(2x+11)=1
Сделаем замены:
∛(x+5)/(2x+11)=a ∛(x+6)/(2x+11)=b
Откуда
a+b=1
a^3+b^3=2x+11/2x+11=1
a^3+b^3=(a+b)(a^2+b^2-ab )
тк (a+b)=1
a^2-ab+b^2=1
b=1-a
a^2-a(1-a)+(1-a)^2=1
a^2-a+a^2+a^2-2a+1=1
3a^2-3a=0
a(a-1)=0
a=0
a=1
x+5=0
x=-5
x+5=1
x=-4 но этот корень не подходит
НО не будем забывать про симетрию выражения откуда и вылезла ошибка
a^2+b^2-ab=0
Подставим
a=b-1
То в силу симетрии получим похожее уравнение:
b^2-b=0
b(b-1)=0
то x+6=0
x=-6
x+6=1
x=-5
Ответ: x=-5 x=-6 x=-11/2
[latex] \sqrt[3]{x+5} + \sqrt[3]{x+6} - \sqrt[3]{2x+11} =0[/latex]
Пусть [latex] \sqrt[3]{x+6} =a;[/latex] [latex] \sqrt[3]{x+5} =b[/latex] [latex] \sqrt[3]{2x+11} =c[/latex]
Имеем
[latex]b+a-c=0[/latex]
Каждое заменную подставим
[latex] \left \{ {{\sqrt[3]{x+6 }=a} \atop { \sqrt[3]{x+5}=b }}\atop { \sqrt[3]{2x+11}=c} \right. \to \left \{ {{x+6=a^3} \atop {x+5=b^3}}\atop {2x+11=c^3}} \right. [/latex]
Также выражаем а
[latex]b+a-c=0\to a=-b+c[/latex]
Подставим
[latex] \left \{ {{x+6=(-b+c)^3} \atop {x+5=b^3}}\atop {2x+11=c^3}} \right. [/latex]
Из уравнения 2 выразим переменную х
[latex] \left \{ {{x+6=(-b+c)^3} \atop {x=b^3-5}}\atop {2x+11=c^3}\right. [/latex]
Также подставим вместо х
[latex] \left \{ {{(b^3-5)+6=(-b+c)^3} \atop {x=b^3-5}}\atop {2(b^3-5)+11=c^3} \right. \to \left \{ {{b^3+1=-(b-c)^3} \atop {2b^3+1=c^3}}\atop {x=b^3-5} \right. \to \left \{ {{2b^3-3b^2c+3bc^2-c^3+1=0} \atop {x=b^3-5}}\atop {2b^3-c^3+1=0} \right. [/latex]
Имеем
[latex] \left \{ {{2b^3-3b^2c+3bc^2-c^3+1-(2b^3-c^3+1)=0} \atop {x=b^3-5}}\atop {2b^3-c^3+1=0}\right. [/latex]
Имеем уравнение
[latex]-3b^2c+3bc^2=0 \\ -3*0c+0=0 \to2b \neq 0 \\ -3 \frac{c}{b} +3 (\frac{c}{b} )^2=0[/latex]
Пусть [latex] \frac{c}{b} =t[/latex]
[latex]-3t+3t^2=0|:(-3) \\ t(t-1)=0 \\ t_1=0 \\ t_2=1[/latex]
Имеем что [latex] \left[\begin{array}{ccc}c=0;\\c=b\\b=0\end{array}\right[/latex]
Если c=0
[latex]2b^3+1=0 \\ b^3=- \frac{1}{2} \\ b=- \frac{ \sqrt[3]{4} }{2} \to x=(- \frac{ \sqrt[3]{4} }{2} )^3-5= -\frac{11}{2} [/latex]
Если c=b
[latex]2b^3-c^3+1=0 \to 2c^3-c^3+1=0 \\ c^3+1=0 \\ c=-1 \\ x=c^3-5 \to x=-6[/latex]
Если b=0
[latex]2*0-c^3+1=0 \\ -c^3+1 \to c=1 \\ x=-5[/latex]
Ответ: [latex]x=- \frac{11}{2} ;x=-6;x=-5[/latex]
Не нашли ответ?
Похожие вопросы