Решить уравнение cos 4x* cos 7x = cos 6x* cos 3x

Решить уравнение cos 4x* cos 7x = cos 6x* cos 3x
Гость
Ответ(ы) на вопрос:
Гость
Используются формулы суммы и произведения тригонометрических функций [latex]cos( \frac{11x}{2} )+cos( \frac{3x}{2} )=cos( \frac{9x}{2} )+cos( \frac{3x}{2} )[/latex] [latex]cos( \frac{11x}{2} )-cos( \frac{9x}{2} )=0[/latex] [latex]2sin( \frac{ \frac{11x}{2}+ \frac{9x}{2} }{2} )sin( \frac{ \frac{9x}{2} -\frac{11x}{2}}{2} )=0[/latex] [latex]2sin(5x)sin( \frac{x}{2} )=0[/latex] [latex]5x=\pi n,n\in Z[/latex] или [latex]\frac{x}{2}=\pi k, k\in Z[/latex] [latex]x= \frac{\pi n}{5} ,n\in Z[/latex] или [latex]x=2\pi k, k\in Z[/latex] Все решения второго уравнения содержится в решениях первого. Ответ: [latex]x= \frac{\pi n}{5} ,n\in Z[/latex]
Не нашли ответ?
Ответить на вопрос
Похожие вопросы