Ответ(ы) на вопрос:
a) x²-6x-7>0
x²-6x-7=0
D=36+28=64
x₁=(6-8)/2= -1
x₂=(6+8)/2=7
+ - +
------- -1 ------------- 7 ------------
\\\\\\\\\\ \\\\\\\\\\\\\\
x∈(-∞; -1)U(7; +∞)
б) x²+2x-48≤0
x²+2x-48=0
D=4+192=196
x₁=(-2-14)/2= -8
x₂=(-2+14)/2=6
+ - +
-------- -8 ------------- 6 --------------
\\\\\\\\\\\\\\\\
x∈[-8; 6]
в) x²+4x+3≥0
x²+4x+3=0
D=16-12=4
x₁=(-4-2)/2=-3
x₂=(-4+2)/2= -1
+ - +
-------- -3 ----------- -1 ------------
\\\\\\\\\\ \\\\\\\\\\\\\\\
x∈(-∞; -3]U[-1; +∞)
г) x²-12x-45<0
x²-12x-45=0
D=144+180=324
x₁=(12-18)/2=-3
x₂=(12+18)/2=15
+ - +
------ -3 -------------- 15 -------------
\\\\\\\\\\\\\\\\\\
x∈(-3; 15)
x²-6x-7>0 ⇔(x-7)(x+1)>0 ⇔
+ - +
//////////////////////////(-1)----------------------------(7)/////////////////////////
x∈(-∞,-1)∪(7,+∞)
x²+2x-48≤0 ⇔(x+8)(x-6)≤0 ⇔
+ - +
----------------------(-8)/////////////////////////(6)-------------------------------
x∈[-8,-6]
Не нашли ответ?
Похожие вопросы