Составьте уравнение касательно в графику функции y=2-x/2-x^2 в точке x_0 = 2

Составьте уравнение касательно в графику функции y=2-x/2-x^2 в точке x_0 = 2
Гость
Ответ(ы) на вопрос:
Гость
[latex]y=2- \frac{x}{2}- x^{2} [/latex], x0=2 y=f'(x0)·(x-x0)+f(x0) - уравнение касательной в точке x0 [latex]f(x)=2- \frac{x}{2}- x^{2} [/latex] [latex]f'(x)=-\frac{1}{2}-2x[/latex] [latex]f(x0)=f(2) = 2- \frac{2}{2}- 2^{2} =2-1-4=-3[/latex] [latex]f'(x0)=f'(2)=-\frac{1}{2}-2*2=-4.5[/latex] y=-4.5·(x-2)+(-3)=-4.5x+9-3=-4.5x+6 y=-4.5x+6 - уравнение касательной в точке x0=2
Гость
y = f(x0) + f ' (x0) (x - x0) f ' (x) = (2 - 1/2*x - x^2) ' = - 1/2 - 2x f ' (2) = - 1/2 - 4 = - 4,5 f ( 2) = 2 - 2/2 - 4 = 2 - 5 = - 3 y = - 3 - 4,5 (x - 2) = - 3 - 4,5x + 9 = - 4,5x + 6 
Не нашли ответ?
Ответить на вопрос
Похожие вопросы