Статистические оценки параметров распределения.
Статистические оценки параметров распределения.
Ответ(ы) на вопрос:
Гость
Такие распределения, как биномиальное, показательное, нормальное, являются семействами распределений, зависящими от одного или нескольких параметров. Например, показательное распределение с плотностью вероятностей , зависит от одного параметра λ, нормальное распределение- от двух параметровmи σ. Из условий исследуемой задачи, как правило, ясно, о каком семействе распределений идёт речь. Однако остаются неизвестными конкретные значения параметров этого распределения, входящие в выражения интересующих нас характеристик распределения. Поэтому необходимо знать хотя бы приближённое значение этих величин.Пусть закон распределения генеральной совокупности определён с точностью до значений входящих в его распределение параметров , часть из которых может быть известна. Одной из задач математической статистики является нахождение оценок неизвестных параметров по выборке наблюденийиз генеральной совокупности. Оценка неизвестных параметров заключается в построении функцииот случайной выборки, такой, что значение этой функции приближённо равно оцениваемому неизвестному параметруθ. Функцияназываетсястатистикойпараметраθ.Статистическойоценкой(в дальнейшем простооценкой) параметраθтеоретического распределения называется его приближённое значение, зависящего от данных выбора.Оценка является случайной величиной, т.к. является функцией независимых случайных величин ; если произвести другую выборку, то функция примет, вообще говоря, другое значение.Существует два вида оценок – точечные и интервальные.Точечнойназывается оценка, определяемая одним числом. При малом числе наблюдений эти оценки могут приводить к грубым ошибкам. Чтобы избежать их, используют интервальные оценки.Интервальнойназывается оценка, которая определяется двумя числами – концами интервала, в котором с заданной вероятностью заключена оцениваемая величинаθ.
Не нашли ответ?
Похожие вопросы