Сумма первых трех членов геометрической прогрессии равна 7, следующих трех - 56. Чему равен шестой член этой прогрессии?
Сумма первых трех членов геометрической прогрессии равна 7, следующих трех - 56. Чему равен шестой член этой прогрессии?
Ответ(ы) на вопрос:
Гость
b1 + b2 + b3 = 56 b1 + b1q + b1q² = 56 b1 + b1q + b1q² = 56
b4 + b5 + b6 = 7 b1q^3 + b1q^4 + b1 q^5 = 7 q^3(b1 + b1q + b1q²) = 7
Разделим первое уравнение на второе. Получим:
1/q³ = 8 ⇒ q = 1/2
Подставим в первое уравнение найденный знаменатель
b1 + b1·1/2 + b1·1/4 = 56
7b1/4 = 56
b1= 32
Теперь ищем что спрашивают: b3·b4 = b1·q²·b1·q³ = ( b1)²·q^5 = 32²·(1/2)^5= 32
Не нашли ответ?
Похожие вопросы