Сумма трёх чисел образующих геометрическую прогрессию равна 39. Если первое число умножить на -3, то получится арифметическая прогрессия. Найти три первоначальных числа
Сумма трёх чисел образующих геометрическую прогрессию равна 39. Если первое число умножить на -3, то получится арифметическая прогрессия. Найти три первоначальных числа
Ответ(ы) на вопрос:
Гость
Три числа, образующих геометрическую прогрессию (исходные) : b, bq, bq².
Арифметическая прогрессия: −3b, bq, bq².
Получаем систему
{ b(1 + q + q²) = 39,
{ 2bq = bq² − 3b.
Из второго уравнения (поскольку b не может быть равным 0)
q² − 2q − 3 = 0,
(q − 3)(q + 1) = 0.
Значит, знаменатель прогрессии либо 3, либо −1. В каждом случае из первого уравнения системы находим соответствующее значение b.
Ответ:13, 39, 117 (q = 3, b = 13);
Не нашли ответ?
Похожие вопросы