Сумма трех чисел составляющих возрастающую геометрическую прогрессию равна 56.если из них вычесть соответственно 1,7 и 21, то вновь полученные числа составят арифметическую прогрессию. найдите сумму десяти членов геометрической...

Сумма трех чисел составляющих возрастающую геометрическую прогрессию равна 56.если из них вычесть соответственно 1,7 и 21, то вновь полученные числа составят арифметическую прогрессию. найдите сумму десяти членов геометрической прогрессии. решение нужно?
Гость
Ответ(ы) на вопрос:
Гость
Пусть три числа, образующий геометрическую прогрессию, равны соответственно b, bq, bq^2, причем q > 1, т.к. последовательность возрастающая. Тогда b + bq + bq^2 = b(1+q+q^2)=56. Вычтем 1, 7, 21 из членов прогрессии. Получим b-1, bq-7, bq^2-21. Т.к. получилась арифметическая прогрессия, то выполняется условие: (b-1)+(bq^2-21)=2(bq-7) b(q^2-2q+1)=8. Разделим одно равенство на другое: (b(q^2+q+1))/(b(q^2-2q+1))=56/8=7 q^2+q+1=7q^2-14q+7 6q^2-15q+6=0 2q^2-5q+2=0 Далее решаем это квадратное уравнение. D=(-5)^2-4*2*2=9 q=(5+-3)/(2*2) q1=2, q2=1/2. q2 не подходит, т.к. оно меньше 1. Значит, q=2. Найдем b: b = 8/(q^2-2q+1)=8/(q-1)^2=8/1=8 Члены геометрической прогрессии: 8,16,32 Члены арифметической прогрессии: 7,9,11. Значит, посчитано правильно. Теперь найдем сумму первых 10 членов геометрической прогрессии: S=b*(q^10-1)/(q-1)=8*(2^10-1)/(2-1)=8184
Не нашли ответ?
Ответить на вопрос
Похожие вопросы