Три числа образуют арифметическую прогрессию. Сумма первых двух чисел равна 25, а сумма второго и третьего равна 39. Найдите большее из этих чисел.

Три числа образуют арифметическую прогрессию. Сумма первых двух чисел равна 25, а сумма второго и третьего равна 39. Найдите большее из этих чисел.
Гость
Ответ(ы) на вопрос:
Гость
a - первое число (a+d) - второе число, где d - знаменатель прогрессии (a+2d) - третье число Получим систему уравнений: {а + (a+d) = 25 {(a+d) + (a+2d) = 39 Решаем {2а + d = 25 {2a+3d = 39 Первое уравнение умножим на (-1) {-2а - d = -25 {2a+3d = 39 Сложим эти уравнения и получим: -2а - d + 2a+3d = -25 + 39 2d = 14 d = 14 : 2 d = 7 Найдём а с помощью первого уравнения 2а + 7 = 25 2а = 25 - 7 2а = 18 а = 18 : 2 а = 9 А теперь получим все 3 числа и определим, какое из них большее 9 - a - первое число 9 + 7 = 16 - второе число, где d - знаменатель прогрессии 9 + 2*7 = 9 + 14 = 23 - третье число Очевидно, что третье число 39 больше остальных Ответ: 39
Не нашли ответ?
Ответить на вопрос
Похожие вопросы