У Маши есть 6 карточек, на каждой из которых написано натуральное число. Она произв

У Маши есть 6 карточек, на каждой из которых написано натуральное число. Она произвольно выбирает 3 карточки и вычисляет сумму чисел, написанных на них. Проделав это для всех 20 возможных комбинаций из трех карточек, она обнаружила, что 10 сумм равны 16, а остальные 10 сумм – 18. Тогда наименьшее из чисел на карточках равно: А)2 Б)3 В)4 Г)5 Прошу с решением
Гость
Ответ(ы) на вопрос:
Гость
Ответ: В - 4 Предположим, что на карточках есть хотя бы 4 различных числа a<b<c<d. Тогда суммы a+b+c, a+b+d, a+c+d попарно различны, что невозможно. Рассмотрим случай, когда на карточках есть ровно 3 различных числа a<b<c. При этом хотя бы одно число (например, a) встречается не менее 2 раз. Тогда суммы 2a+b<2a+c<a+b+c, что невозможно. Все 6 чисел между собой равны быть не могут, поэтому остается случай, когда есть только 2 различных числа a<b.  Если есть хотя бы две карточки с числом a и 2 карточки с числом b, то суммы 2a+b, a+2b попарно различны и 2a+b<a+2b. Тогда 2a+b=16, a+2b=18, сложив эти равенства, имеем 3a+3b=34, что невозможно, поскольку 34 не делится на 3. Остаются случаи, когда либо есть число a и 5 чисел b, либо число b и 5 чисел a. В первом случае 10 сумм равны a+2b=16 и 10 сумм равны 3b=18, откуда b=6, a=4. Во втором случае 2a+b=16, 3a=18, откуда a=6, b=4, что противоречит условию a<b. Таким образом, наименьшее из чисел равно 4.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы