В поход пошли 10 человек, младше всех остальных был Гриша. Он нашёл сумму возрастов остальных участников похода и поделил на сумму возрастов всех десяти человек. Мог ли Гриша получить число меньше, чем 0,9?

В поход пошли 10 человек, младше всех остальных был Гриша. Он нашёл сумму возрастов остальных участников похода и поделил на сумму возрастов всех десяти человек. Мог ли Гриша получить число меньше, чем 0,9?
Гость
Ответ(ы) на вопрос:
Гость
Обозначим возраст Гриши за x1, возраст остальных соответственно x2, x3, ..., x10. Из условия x2>x1, x3>x1, ..., x10>x1. Отношение, которое посчитал Гриша, равно (x2+x3+x4+x5+x6+x7+x8+x9+x10)/(x1+x2+x3+x4+x5+x6+x7+x8+x9+x10)=a/(x1+a), где a=x2+x3+x4+x5+x6+x7+x8+x9+x10. Попробуем решить неравенство a/(x1+a)<0,9, 10a/(x1+a)<9, (a-9x1)/(x1+a)<0 (*), т.к. x1+a>0, то неравенство (*) равносильно неравенству a-9x1<0⇒9x1>a⇒9x1>x2+x3+x4+x5+x6+x7+x8+x9+x10, что невозможно, так как x2>x1, x3>x1, ... x10>x1, значит x2+x3+...+x10>9x1, что противоречит 9x1
Не нашли ответ?
Ответить на вопрос
Похожие вопросы