В треугольнике ABC O - точка пересечения отрезков AK и DB( Кє ВС , Dє АС) .Найти отношения отрезков АD:DC если АО : ОК равняется 2:3 , СК:ВК равняется 3:4 .

В треугольнике ABC O - точка пересечения отрезков AK и DB( Кє ВС , Dє АС) .Найти отношения отрезков АD:DC если АО : ОК равняется 2:3 , СК:ВК равняется 3:4 .
Гость
Ответ(ы) на вопрос:
Гость
Из точки К  проведем прямую КЕ, параллельную ВД и пересекающую АС в точке Е (КЕ||ВД) Известно, что прямая, параллельная стороне треугольника и пересекающая его другие две стороны,отсекает от него треугольник подобный данному. Значит ΔАДО подобен ΔАЕК: АД/АЕ=АО/АК Т.к. АО/ОК=2/3, то АК=5АО/2 АД/АЕ=2/5 АЕ=5АД/2 АЕ=АД+ДЕ, откуда ДЕ=АЕ-АД=5АД/2-АД=3АД/2 ΔСЕК подобен ΔСДВ: СЕ/СД=СК/СВ Т.к. СК/ВК=3/4, то ВК=7СК/3 СЕ/СД=3/7 СЕ=3СД/7 СД=ДЕ+СЕ, откуда ДЕ=СД-СЕ=СД-3СД/7=4СД/7 3АД/2=4СД/7 АД/СД=8/21
Не нашли ответ?
Ответить на вопрос
Похожие вопросы