В усеченном конусе радиусы оснований равны 8 и 34, площадь осевого сечения равна 168. Найдите высоту и площадь боковой поверхности.

В усеченном конусе радиусы оснований равны 8 и 34, площадь осевого сечения равна 168. Найдите высоту и площадь боковой поверхности.
Гость
Ответ(ы) на вопрос:
Гость
Осевое сечение - трапеция площадь трапеции равна полусумме оснований на высоту,основания трапеции - диаметры(2*r). S=(2r+2R)/2  * h 168=42*h h = 4 Площадь боковой поверхности равна S=π(r+R)*l Из вершины угла верхнего основания опускаете перпендикуляр к нижнему основанию - это высота конуса.Теперь рассмотрим прямоугольный треугольник.высота конуса=катет треугольник равен в 4,а другой катет равен: из бОльшего диаметра вычитаем меньший диаметр и делим пополам выходит (68-16)/2=26.Теперь по теореме Пифагора найдем образующую=гипотинузу l=√(h^2-((2R-2r)/2)^2=√h^2-(R-r)^2= 2√173/ образующая равна L = √(h²+(R-r)²) =2√173 S=π(8+34)*2√173=84√173*π
Не нашли ответ?
Ответить на вопрос
Похожие вопросы