Вектор длины 10 приложен в точке (-5;1). Найти координаты вектора, если он состовляет угол в 30 градусов с положительным направлением оси х.
Вектор длины 10 приложен в точке (-5;1). Найти координаты вектора, если он состовляет угол в 30 градусов с положительным направлением оси х.
Ответ(ы) на вопрос:
y=y0+10*sin30=y0+5=1+5=6 x=x0+10cos30=-5+5sqrt(3) координаты вектора (5;5sqrt(3))
[latex]\vec V = [10, \alpha=30\°] = 10 [ cos \alpha , sin\alpha] = 10[\frac {\sqrt3}{2} , \frac 12] = [ {5 \sqrt3} , 5] \approx [8.66 , 5 ][/latex] координаты конца вектора = коорды приложения плюс вектор : [latex](-5 , 1 ) + [{5 \sqrt3} , 5] =(({5 \sqrt3} - 5) , (6)) \approx (3.660 , 6)[/latex]
Не нашли ответ?
Похожие вопросы