(x^2+x)^2-11(x^2+x)=12

(x^2+x)^2-11(x^2+x)=12
Гость
Ответ(ы) на вопрос:
Гость
заменим y = x^2+x тогда получаем y^2 - 11y - 12 = 0 D = 121 + 4*12 = 169 y1 = (11 + 13)/2 = 12 y2 = -1 переходим к x 1) x^2+x-12 = 0 D =  1+48 =49 x1=3  x2=-4   - это решение 2 ответа x 2) x^2+x+1 = 0 D = 1-4 <0 нет больше решений 
Гость
Для начала нужно раскрыть скобки и перенести 12 в левую часть: х^4+2х^3-10х^2-11х-12=0 Т.к. получилось уравнение 4 степени далее по схеме Горнера нужно разложить на множители: (х-3)(х+4)(х^2+х+1)=0 Уравнение равно нулю,если хотя бы один из множителей равен нулю. Третий множитель не имеет корней при приравнивании его к нулю,т.к его дискриминант <0 => х=3 или х=-4 Оба корня подходят,для проверки можно подставить их в исходное уравнение. Ответ: -4; 3
Не нашли ответ?
Ответить на вопрос
Похожие вопросы